你的位置:首页 > 技术支持 > 解决方案

基于稀土材料催化化学发光法检测乙腈气体传感器的研究

2013-10-17 17:15:34      点击:

2. 3  催化发光响应曲线
以280 mL/ min 的空气流速往反应器入口处通入不同浓度的乙腈气体,控制测量温度为175 ℃,测量波长为490 nm ,绘制催化发光响应曲线见图3 。由图3 可知,发光响应信号随浓度增加而增加,但曲线形状是相似的。通入乙腈气体13 s 后即出现最大峰值,表明该传感器对乙腈气体有快速响应。其发光强度的半衰期约为24 s。
2. 4  最佳发光波长的选择
实验发现,乙腈气体通过Y2O3 粉体表面时发射光的强度随波长变化,图4 是浓度为145 mg/ m3 的乙腈气体在载气流速为280 mL/ min ,测定温度为175 ℃时,采用波长分布为400~640 nm 的10 种干涉滤波片测量这一反应的催化发光光谱。由图4 可知,在490 nm 处发光强度达到最大,因此,实验中选择490nm 作为最佳测量波长。另外,该图的对称性比较强,特别是440 nm、460 nm 和535 nm、555 nm 处发光强度大致相等,而在490 nm 处发光强度突然增大,乙腈气体在Y2O3 粉体上呈现特异的催化发光光谱图值得进一步研究。
2. 5  催化发光温度的选择
在490 nm 波长处,在空气流速为280 mL/ min 条件下实验了浓度为145 mg/ m3 乙腈气体的工作温度,结果见图5 。实验表明,在175 ℃时发光强度可达最强,因此实验采用175 ℃作为测量温度。
2. 6  载气流速的影响
在175 ℃,490 nm 波长处实验了载气流速对浓度为145 mg/ m3 乙腈气体的催化发光强度的影响(见图6) ,实验显示当载气流速较低时,发光信号较低,随载气流速增强,发光信号也随之增高,载气流在280mL/ min 左右时发光强度达到饱和值而且灵敏度较高。因此,选择280 mL/ min 为本实验的载气流速。
2. 7  工作曲线及检出限
在上述最佳的测定条件下研究了化学发光强度与乙腈浓度的关系,发现了在2. 9~290. 0 mg/ m3 范围内乙腈气体的浓度与化学发光强度间呈良好的线性关系。回归方程为: I = 104. 1c + 0. 7826 ( I 为信背比, c 为乙腈蒸气浓度:mg/ m3 ) ;线性相关系数r = 0. 9955 ;检出限为1 mg/ m3 。对145 mg/ m3 乙腈气体平行测定了11 次的发光强度,其相对标准偏差为3. 9 % ,重现性良好。
2. 8  选择性实验
试验了正己烷、四氯化碳、苯、无水乙醇、甲醛、环已烷、二甲苯、氨、甲苯、甲醇与乙腈气体同浓度共存时(58 mg/ m3 ) 对本体系发光强度的影响。结果表明,除了苯在低浓度引起约为13. 5 %的负干扰,无水乙醇和甲醇引起较大的正干扰外,其它气体均不干扰测定。
2. 9  样品分析
为了实现其它微量气体存在下乙腈气体的检测,进行了两组混合气体的样品分析,包括乙腈、甲醛、氨水、苯几种主要室内污染气体。分析结果如表2 所示,乙腈的回收率分别为101. 3 %和100. 7 %。
2. 10  反应机理的探讨
从图7 中可以看出, Y2O3 粉体的发射波长是446. 14 nm ,激发波长是391. 95 nm ,而乙腈气体在Y2O3 粉体表面的催化发光显示的最大波长是490 nm ,说明乙腈的催化氧化发光现象不是一个能量转移过程。乙腈在高温下的氧化最终产物为CO2 、N2 、N2 O和NO2[5 ] ,但反应的中间过程可能产生CO 。根据Breysse等[ 6 ] 提出的在ThO2 表面CO 催化氧化的机理可推测乙腈催化发光的机理为:O2 在Y2O3 表面吸附时与晶格电子( eL) 结合形成O-ads ,乙腈在被氧化过程中产生CO ,而CO 与Y2O3 表面晶格孔穴( pL) 形成CO+ads,然后两种表面吸附物种发生催化发光反应:CO+ads+O-ads = CO32 = CO2 + hν。有关的发光现象是在激发态产物CO32 蜕变为基态CO2 的过程中产生的,在490 nm 附近出现其最强光。